Four-Wheel Trucks for Passenger Train Equipment*

A Discussion of the Fundamental Factors of Design and of the Ability of This Type of Truck to Fulfill Them

By Roy V. WRIGHT

The Pennsylvania Railroad uses four-wheel trucks under all of its passenger coaches, although the P 70 class, 70 ft. in length and having a seating capacity of 88, weigh light from 118,000 to 122,000 lb. Loaded with passengers they weigh about 135,000 lb., and never more than 140,000 lb. It is the standard practice on that system to use such trucks under all passenger equipment cars weighing less than 120,000 to 125,000 lb., except for socalled load-carrying cars, including baggage-express, mail, baggage-mail, etc., which are designed to weigh over 140,000 lb. when loaded. The light weight of the bodies of the Pennsylvania P 70 coaches—and these are now standard on that system varies from 93,000 to 96,000 lb. It is assumed that these cars regularly carry as much weight in passengers and hand baggage as coaches on other roads, inasmuch as they seat 88 persons, or several more than the maximum provided for in the standard coaches of most roads. It is the practice on the great majority of railroads to use six-wheel trucks under coach bodies weighing much less than this, comparatively few roads using fourwheel trucks under bodies weighing more than 85,000 lb. and many of them using six-wheel trucks under bodies weighing even less than this.

FACTORS IN DESIGN

In designing the trucks for a passenger coach four features must be kept in mind and generally in the following order as to importance, although there may be some question as to the relative value of the last two:

- (1) They must be designed for safety.
- (2) They must ride smoothly, for travelers are particular as to this in these days and will desert a road with rough-riding cars if a competitor furnishes better service. With heavy steel cars operated in long trains at high speed and with the locomotives taxed to the limit of their capacity it is difficult to operate and brake the trains without occasional roughness and jolts, and a factor such as truck design cannot be allowed to contribute further to the rough riding.
- (3) The weight of the truck must be kept to a minimum if for no other reason than the effect on the cost of conducting transportation.
- (4) The truck should be designed with a view to keeping the cost of maintenance as low as possible. Here, as in the requirement for safety, it is desirable to have as few parts as possible and of simple construction.

DOES THE FOUR-WHEEL TRUCK MEET THESE REQUIREMENTS?

How does the four-wheel truck meet these requirements under the heavy passenger equipment in service on the Pennsylvania Railroad?

(1) The four-wheel truck of modern steel construction which has been in use on that system for a number of years has given splendid satisfaction so far as safety is concerned. As on other roads some trouble has been experienced with hot boxes, and it was at first thought that the journal-bearing area was too small. The use of larger bearing areas does not seem to have materially improved conditions, and it is now believed that the difficulty is entirely due to dirt or gritty matter entering the journal boxes. The problem then becomes one of improving the journal box lid and dust guard to prevent this, rather than to increase the diameter or length of the journals.

There has been no breakage of axles except for three cases due to defective material when the first steel trucks were introduced many years ago. No physical weakness has developed in

* From a paper to be presented at the December, 1915, meeting of the American Society of Mechanical Engineers, New York.

any of the parts in the ten years the trucks have been in service, so that as far as safety is concerned there can be no question. The possibility of accident would seem to be less with the four-wheel truck because of the smaller number of parts that are required.

(2) There seems to be a feeling on the part of some mechanical engineers that the four-wheel truck, with its shorter wheel base (7 or 8 ft. as compared with 10 to 11 ft. for the

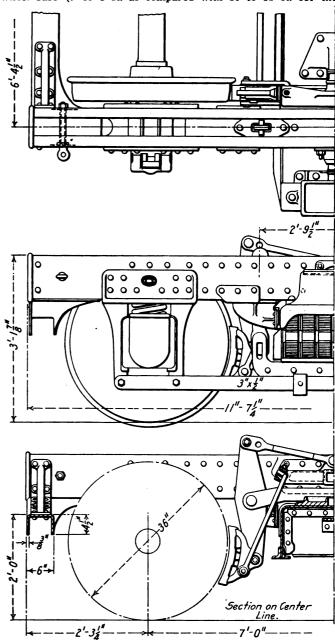


Fig. 1—One End of Original Four-Wheel Steel Passenger Car Truck Before the Application of the Clasp Brakes; Pennsylvania Railroad

six-wheel truck) will ride less easily than the six-wheel truck. With coil springs over the journals, elliptical springs under the bolster, and provision for lateral motion of the bolster, it would seem that there ought not to be much difference in this respect.

Experiments show that much of the rough riding or jolting on passenger coaches has been due to the method of anchoring the top of the dead lever to the truck frame. The unbalanced forces in the truck when the brakes are applied tend to tilt the truck frame out of horizontal alinement, thus causing a "jerky" action. By anchoring the dead lever to the body under-

frame this is eliminated. This development is comparatively recent and affects the six-wheel as well as the four-wheel truck. The effect of anchoring the dead lever to the truck frame has possibly been more noticeable on the four-wheel truck, because

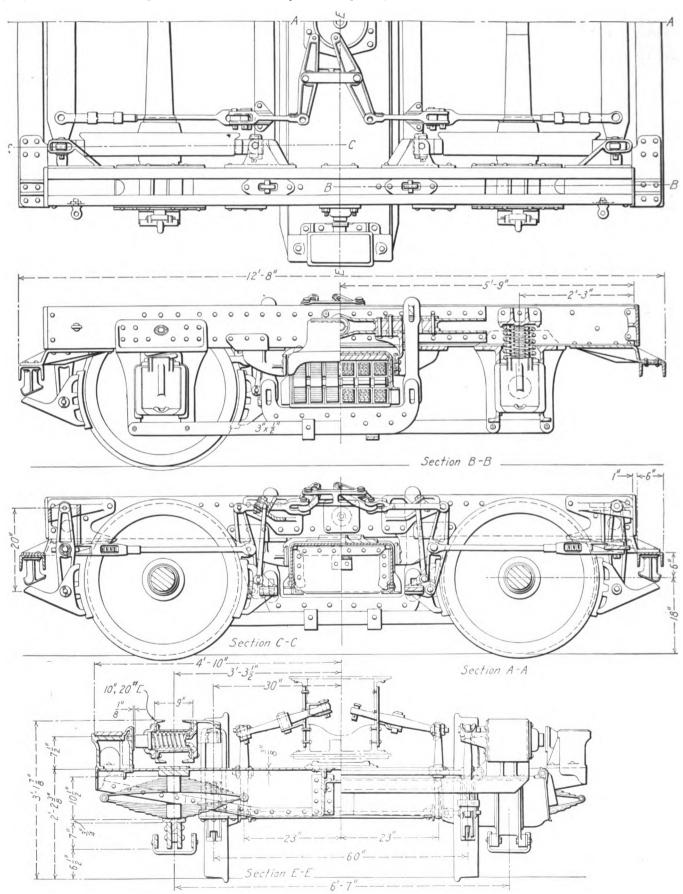


Fig. 2—Original Four-Wheel Steel Passenger Car Truck with Clasp Brakes Applied; Pennsylvania Railroad

Digitized by Google

one-to-one dead levers are used, resulting in a greater pull on the frame than in the case of the six-wheel truck; then, too, the resisting moment is less because of the shorter wheel base of the four-wheel truck. This improvement has been patented.

(3) There is a wide variation in the weights of different types of steel passenger car trucks, but it is probably fair to state that a pair of four-wheel trucks will weigh from 10,000 to 15,000 lb., or more, less than a pair of six-wheel trucks having the same carrying capacity. In other words, for the same total

weight of car the one with four-wheel trucks will carry ten to fifteen thousand pounds more loading or body weight, or with the same weight of body the total weight of the car with four-wheel trucks will be from 10,000 to 15,000 lb. less than the one with six-wheel trucks. For a car weighing 120,000 lb. and equipped with four-wheel trucks this means a saving of from 8 to 11 per cent in total weight as compared with what it would be if six-wheel trucks were used. On most roads it is the practice to carry car bodies weighing more than 85,000 lb. on six-

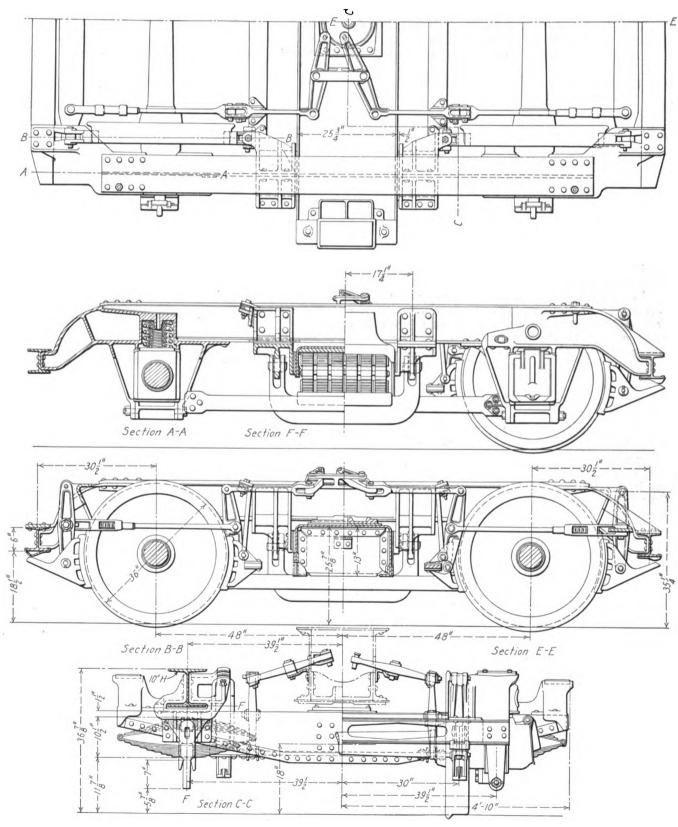


Fig. 3—Present Standard Four-Wheel Steel Passenger Car Truck; Pennsylvania Railroad

wheel trucks, which weigh fully 15,000 lb. per car more than four-wheel trucks. A locomotive that can haul eight cars equipped with such six-wheel trucks over a given division will haul nine cars of the same seating capacity having four-wheel trucks—a saving much to be desired.

(4) Roughly speaking, the cost of maintenance of a steel passenger car truck may be said to be very nearly in proportion to the number of its wheels and axles, these with the brake shoes being the parts subjected to the greatest wear and requiring frequent repairs and renewals. While no exhaustive data is available as to the comparative cost of repairs and maintenance of six-wheel and four-wheel trucks of the same carrying capacity, they are said by those who have checked these costs to be at least 50 per cent greater for the six-wheel truck than for the four-wheel truck.

DEVELOPMENT OF PENNSYLVANIA FOUR-WHEEL TRUCK

As a partial check on these conclusions, it is proposed to briefly review the development of the four-wheel steel truck for passenger cars on the Pennsylvania Railroad. From the outset and throughout this development the aim has been to reduce the number of parts to a minimum and make the construction as simple as possible. The problem has been complicated somewhat by the necessity of providing for the application of motors to the trucks used under motor cars in electrified districts and also by the application within the past few years of the clasp brakes, which are now standard on the Pennsylvania for all four-wheel trucks and for all new passenger equipment trucks.

In designing the first four-wheel steel trucks in the early part of 1905 it was aimed to use them under the largest coach possible and keep within the M. C. B. load limits for 5-in. x 9-in. axles. Shortly after the trucks had been placed in service three of the axles broke in the wheel seat, where the stress is least. Investigation finally showed that the breakage was due to defects in manufacturing caused by a faulty furnace which had been discarded shortly after these axles were made. In the meantime, however, as a measure of absolute safety, it was decided to increase the axles on existing cars 1/2 in. in diameter and on new cars go to the next larger size standard M. C. B. axle, the 5½-in, x 10-in. Because of hot box troubles the length of journal was afterward increased to 11 in., although experience has since indicated, as previously noted, that the trouble was probably due more to dirt getting into the journal box than the lack of journal bearing area. The 5½-in. x 11-in. journal is now standard for all four-wheel as well as sixwheel trucks.

In going from the wood to the steel construction spring planks, axle guards and brake beams were done away with, the brake levers being attached directly to the brake heads. Each side frame was formed of two 10-in. 20-lb. channels, with the flanges turned inward and forming a box girder construction. The channels were spaced so as to measure 9 in. over-all. This was done to provide sufficient strength for resisting the lateral stresses, a requirement which has been overlooked in some designs. To check or limit the lateral motion or swaying of the bolster a spring arrangement was used, as shown in the drawing.

The subsequent use of clasp brakes made it necessary to modify this design somewhat. Fig. 2 shows the details of this modified design, which in general is practically the same as the original design, other than the braking arrangement, except for changes in the end construction of the frame to provide for the outside brakes. The detail of the original end construction is shown in Fig. 1. The end rail in the original design, which was formed of a \(\frac{3}{6} \)-in. plate pressed in the form of an inverted U, 6 in. in width, was changed to make room for the brake levers. The outside brakeheads in the case of the clasp brakes are attached to the lower ends of the brake levers, which are anchored at the top to castings riveted to the ends of the side frames. A 6-in. channel with flanges turned

downward connects these castings and forms the end rail. It was also necessary to add brakehead tie bars because of the impossibility of connecting the tension rods for the outer brakeheads direct to the brake lever. It should be noted, however, that this brakehead tie bar is a simple rectangular bar and that the brake tension rod connects to it as close to the brakehead as possible. Obviously the weight and the cost of maintenance of this tie bar is much less than for a brakebeam where the force is applied at the middle. All of the brake levers, including both the dead and live levers, are made the same size and are interchangeable except for the drilling.

The peculiar form of the outer brakehead is noticeable. In the first application of the clasp brakes the ordinary type of brakehead was used, with springs to hold it balanced when hanging loose. These springs were difficult to maintain and were done away with by redesigning the brakehead and adding the tail piece. When the brakehead hangs loose this tail piece rests against a casting which is riveted to the underside of the end rail. When the brake is applied there is a clearance of ½ in. between the brakehead tail piece and the rest. This device has given most satisfactory results.

The next development was a modification of this design to provide for the application of a motor for use under motor cars on electrified divisions. To do this it was found necessary to increase the wheel base from 7 ft. to 8 ft. 6 in. Transoms were also added to support the lip of the motor and the bolster design was modified slightly; otherwise the same parts were used as in the original design.

The next development was a radical one, the box girder sideframe being replaced by a Bethlehem 10-in. 54-lb. H-beam, thus simplifying the design as to construction by reducing the number of parts and still providing sufficient moment to resist the side stresses. As shown in Fig. 3, the journal box pedestal casting has a projection to which the top of the lever for the outside brake is anchored and which also supports the end rail, a 6-in H-beam. The H-beam which forms the side frame has its lower flange and web cut away over part of the journal box pedestal casting and is strongly riveted to it through both the upper and lower flanges. The casting which was formerly used on the end rail to balance the brakehead was replaced by a steel clip which is sprung over and welded to the lower flanges of the end rail.

Another noticeable change was the shortening of the bolster hangers, thus limiting the amount of side swing and making it possible to do away with the complicated spring mechanism which was formerly used to check and limit the lateral motion of the bolster with the longer hangers. Before making this change the springs were gradually blocked and finally wedged solid on a number of the cars. As this had no noticeable effect on the smooth riding, it was decided to discard the springs entirely.

The more important of these changes, that is, the side frame construction and the change in the hanging of the bolster, were first made on four-wheel trucks for suburban cars, several hundred of which were built. These trucks, however, were of lighter construction than those used under the standard coaches and will not be considered in this discussion. The details of this improved truck as designed for use under standard coaches are shown in Fig. 3.

THE BAGDAD RAILWAY.—The Sofia correspondent of a Holland paper writing on the progress of the Bagdad Railway, points out that there is now only wanting the completion of the Bagdad tunnel, which was pierced in May, and upon which work is now being prosecuted with all available energy, and the 24 miles of railway through the Taurus mountains—the most difficult piece of the whole line, in which about 70 tunnels, viaducts, and other engineering works occur. It is hoped that the work will be completed in the course of next year. The continuation of the line from Bagdad has proceeded north to Tekrif 90 miles.

