Continuous-Current Electrification on Steam Railways and in Trunk Line Service.

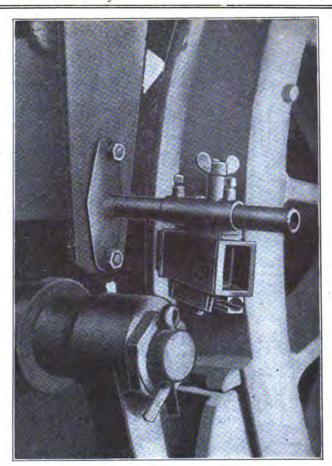
|                        | Mil      | es-    |          | M          | otor | Loca | omo-  |
|------------------------|----------|--------|----------|------------|------|------|-------|
| Road.                  | Single   |        | Line     | cars tives |      |      |       |
|                        | Of line. | track. | voltage. | No.        | H.p. | No.  | H.p.  |
| New York Central       | 33       | 132    | 650      | 137        | 400  | 47   | 2,200 |
| Pennsylvania           | 20       | 75     | 650      | 180        | 400  | 24   | 4,000 |
| West Shore             | 44       | 106    | 650      | 20         | 360  |      |       |
| Long Island            | 42       | 125    | 650      | 137        | 400  | 2    | 1,200 |
| West Jersey & Seashore | 75       | 150    | 650      | 68         | 400  |      |       |
| Baltimore & Ohio       | 3.7      | 7.4    | 600      |            |      | 2.5  | 1,600 |
| Northeastern Railway   | 37       |        | 600      |            | 800  | 2    | 600   |
| Mersey Tunnel          | 4.8      |        | 600      | 24         | 400  |      |       |
| Lancashire & Yorkshire | 18       | 60     | 600      |            | 600  |      |       |
| Great Western          | 5        |        | 600      |            | 600  |      |       |
| Metropolitan Railway   |          | 67     | 600      | 56         | 600  | 10   | 800   |

Car Equipment of Subway and Elevated Systems in American Cities.

The Direct-Current Third-Rail System at Approximately 600 Volts Is Used in All Cases.

| Road.                                 | Miles<br>of single | -Motor cars  |               |  |  |  |
|---------------------------------------|--------------------|--------------|---------------|--|--|--|
| Road.                                 |                    |              |               |  |  |  |
|                                       | track.             | No.          | Horse-power.  |  |  |  |
| Boston Elevated                       | 19                 | 219          | 320           |  |  |  |
| Brooklyn Rapid Transit                | 71                 | 558, 101     | 300, 400      |  |  |  |
| Interborough Rapid Transit (New York) |                    | 969, 764     | 250, 400      |  |  |  |
| Hudson & Manhattan (New York)         | 12                 | 140          | 320           |  |  |  |
| Chicago & Oak Park Elevated           |                    | 65           | 320           |  |  |  |
| Metropolitan West Side (Chicago)      |                    | 15, 210      | 400, 320      |  |  |  |
| Northwestern Elevated (Chicago)       |                    | 20, 128      | 250, 320      |  |  |  |
| Southside Elevated (Chicago)          |                    | 150, 70, 150 | 180, 150, 110 |  |  |  |
| Philadelphia Rapid Transit            |                    | 100          | 250           |  |  |  |

Three-Phase Electrification on Steam Railways and in Trunk Line Service.


|                                                      | Miles    |        |          | Motor      |      | Locomo- |       |
|------------------------------------------------------|----------|--------|----------|------------|------|---------|-------|
| Road.                                                | Single   |        | Line     | cars tives |      |         |       |
|                                                      | Of line. | track. | voltage. | No.        | H.p. | No.     | H.p.  |
| Gt. Nor. (Cascade tunnel)<br>Italian State Railways: | 4        | 6      | 6,600    | ••         |      | 4       | 1,900 |
| Valtelina Railway                                    | 66       |        | 3,000    | 10         | 400  | 12      | 1,500 |
| Giovi Railway                                        | 12.4     | 37.3   | 8,000    |            |      | 20      | 2,000 |
| Mt. Cenis Tunnel                                     | 4.4      |        | 3,000    |            |      | 10      | 2,000 |
| Savona Ceva                                          |          |        | 3,000    |            |      | 10      | 2,000 |
| Swiss Federal Railways:                              |          |        |          |            |      | 1 2     | 1,100 |
| Simplon Tunnel                                       | 13.7     | 14.3   | 3,000    |            |      | 1 2     | 1,300 |
| Garagal Santa Fe (Spain)                             | 13.1     | 14.4   | 5,500    |            |      | 5       | 320   |

## DRIVING WHEEL FLANGE LUBRICATOR.

On roads having numerous curves the matter of sharp flanges is one of the most important and expensive features of maintenance that have to be contended with. Recently the practice of lubricating the flange of a driving wheel has been introduced with very decided success and it has been found that a locomotive equipped with a flange lubricator will in some cases give twice the mileage before it needs to be taken in for tire turning that was previously possible. While, of course, the expense and delay in turning tires is the most important feature in this connection there is also some gain in the power of the locomotive, there is considerably less wear on the rail heads and the general machinery of the locomotive is not strained as much.

In applying a flange lubricator it is of particular importance that it shall operate and be of such form that there will be no possibility of getting any of the lubricant on the wheel tread or the head of the rail. Therefore, while oil has in certain instances been used with some success, a solid block of lubricant, as a stick of graphite, is much more satisfactory.

In the accompanying illustration is shown a wheel flange lubricator which has proved remarkably successful in practice. Its simplicity and durability are easily recognized from the photograph and it will be seen that it is provided with all necessary adjustments and so designed that it can be easily located to avoid sand pipes, brake hangers, and other parts. It is recommended by the manufacturers of this appliance, the Collins Metallic Packing Co., of Philadelphia, that it be set at an angle of 25 degs. with the axle, and while it can be located on either the front or back of the wheels, they recommend that it be on the front of the leading wheel and on the rear of the back driving wheel, and that it also be set slightly above the center line. There is a compression latch on the bottom of the device which engages the lubricating block. One setting of the block is sufficient for two or three hundred miles' service, and pulling the compression device back one notch can be done in an instant and prepares the lubricator again for an equal service. A new block can also be applied very easily. The manufacturers report



WHEEL FLANGE LUBRICATOR APPLIED TO FRONT DRIVER.

that one lubricating block will make from 2,500 to 3,000 miles on a high speed passenger and 3,500 to 4,000 on a switch engine. The heating of the tire, due to excessive braking, does not affect the efficiency of the lubricator.

## ONE LOCOMOTIVE PULLS 120 LOADED CARS.

On August 23 Pennsylvania locomotive No. 1221, Class H8b\* left Altoona, east bound, with 120 loaded cars, the gross tonnage of cars and lading being 8,850 tons. The train left the yard without assistance and the locomotive handled it alone to the Enola yard, a distance of 127 miles. The train on arriving consisted of 119 cars, one having been set out at Huntingdon on account of a broken brass, the gross tonnage then being reduced to 8,778 tons.

This train was operated on the following schedule:

| Miles. | Station.             | Time<br>Arrived. | Time<br>Left. | Remarks.     |           |
|--------|----------------------|------------------|---------------|--------------|-----------|
| 0      | Altoona              |                  | 7.38          |              |           |
| 25.6   | Warrior Ridge        | 8.45             | 9.09          | Took water.  |           |
|        | Huntingdon           | 9.22             | 9.42          | Set out car. |           |
| 19.4   | Vineyard             | 10.51            | 11.25         | Engine cut   | off for   |
| 27     | Denholm              | 12.53            | 2.05          | Took coal a  | nd water. |
| 26.1   | "BW"                 |                  |               | Stopped for  | water.    |
| 4.1    | "BD"                 |                  | 4.0           |              |           |
| 15.1   | West End Susquehanna |                  | 4.47          |              |           |
|        |                      | _                | -             |              |           |
| 120.9  |                      | 4.47 P.M.        | 7.38          | A.M. Total   | included  |

Running time—6 hours 29 minutes. Average speed—19 miles per hour.

This train, because of its extreme length, was fitted with a telephone between the locomotive and the cabin car and was handled under the direction of the officials who accompanied it.

Western Railway Club.—At the regular monthly meeting held on Tuesday, September 20th, a paper entitled "Automatic Connectors for Freight and Passenger Train Cars" was presented by Willis C. Squire.

<sup>\*</sup> See AMERICAN ENGINEER, Feb., 1910, p. 69.